Utilizing Gold Nanoparticle Probes to Visually Detect DNA Methylation
نویسندگان
چکیده
The surface plasmon resonance (SPR) effect endows gold nanoparticles (GNPs) with the ability to visualize biomolecules. In the present study, we designed and constructed a GNP probe to allow the semi-quantitative analysis of methylated tumor suppressor genes in cultured cells. To construct the probe, the GNP surfaces were coated with single-stranded DNA (ssDNA) by forming Au-S bonds. The ssDNA contains a thiolated 5'-end, a regulatory domain of 12 adenine nucleotides, and a functional domain with absolute pairing with methylated p16 sequence (Met-p16). The probe, paired with Met-p16, clearly changed the color of aggregating GNPs probe in 5 mol/L NaCl solution. Utilizing the probe, p16 gene methylation in HCT116 cells was semi-quantified. Further, the methylation of E-cadherin, p15, and p16 gene in Caco2, HepG2, and HCT116 cell lines were detected by the corresponding probes, constructed with three domains. This simple and cost-effective method was useful for the diagnosis of DNA methylation-related diseases.
منابع مشابه
Microarray-based resonance light scattering assay for detecting DNA methylation and human DNA methyltransferase simultaneously with high sensitivity.
A microarray-based resonance light scattering assay, with the combination of methylation-sensitive endonuclease and gold nanoparticle (GNP) probes, has been proposed to sensitively distinguish the DNA methylation level as low as 0.01% (10 pM methylated DNA in 100 nM total DNA) and detect human DNA methyltransferase 1 (Dnmt1) down to 0.1 U mL(-1).
متن کاملMolecular identification of agrobacterium tumefaciens containing pCAMBIA 1305.2 plasmid using multiplex PCR and Gold nanoparticles multiplex probe
Conventional microbiology methods used to detect bacteria include multiple cultures and identification processes, so the results of lab work are painstaking and time-consuming. In recent years, more and more tend to use the diagnostic tests which are based on DNA; hence, DNA diagnostic biosensors have been created to perform DNA identification better. In this study, GUS and hpt genes were used ...
متن کاملMolecular identification of agrobacterium tumefaciens containing pCAMBIA 1305.2 plasmid using multiplex PCR and Gold nanoparticles multiplex probe
Conventional microbiology methods used to detect bacteria include multiple cultures and identification processes, so the results of lab work are painstaking and time-consuming. In recent years, more and more tend to use the diagnostic tests which are based on DNA; hence, DNA diagnostic biosensors have been created to perform DNA identification better. In this study, GUS and hpt genes were used ...
متن کاملSequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes.
We herein report a novel nanoparticle-based electrochemical DNA detection approach. This DNA sensor is based on a "sandwich" detection strategy, which involves capture probe DNA immobilized on gold electrodes and reporter probe DNA labeled with gold nanoparticles that flank the target DNA sequence. Electrochemical signals are generated by chronocoulometric interrogation of [Ru(NH(3))(6)](3+) th...
متن کاملLabel-free and naked eye detection of PNA/DNA hybridization using enhancement of gold nanoparticles.
Utilizing a gold enhancement process after inducing electrostatic interaction between positively charged gold nanoparticles and negatively charged target DNA hybridized to neutral PNA capture probes, a new method for label-free detection of DNA was developed and successfully applied to detect H5-type DNA.
متن کامل